REACCIONES DE OXIDO – REDUCCION
Las reacciones de óxido – reducción o REDOX son aquellas donde está involucrado un cambio en el número de electrones asociado a un átomo determinado, cuando este átomo o el compuesto del cual forma parte se transforma desde un estado inicial a otro final.
La gran mayoría de las reacciones redox ocurren con liberación de energía. Por ejemplo: la combustión de compuestos orgánicos que proporciona energía calórica, las reacciones que se realizan en una pila o batería, donde la energía química es transformada en energía eléctrica, y las reacciones más importantes, desde el punto de vista de nuestro curso, que ocurren a nivel del metabolismo de un ser viviente. Como los alimentos son substancias reducidas, el organismo las oxidada controladamente, liberando energía en forma gradual y de acuerdo a sus requerimientos. Esta energía es transformada en energía química en forma de ATP, la cual es utilizada para todos los procesos endergónicos que ocurren en los organismos.
Un átomo neutro cualquiera tiene un número definido de electrones, el cual corresponde al número de protones que posee su núcleo; es decir, tiene tantos electrones como el valor de su número atómico.
Por ejemplo:
H Z = 1; es decir 1 protón y 1 electrón
Na Z = 11; es decir 11 protones y 11 electrones
I Z = 53; es decir 53 protones y 53 electrones
Generalmente, cuando un elemento determinado se combina a través de una reacción química, el número de electrones que está asociado a él, puede ser mayor o menor que su número atómico característico. De aquí nace el concepto de estado de oxidación o número de oxidación. Lo que simplemente significa, el número de electrones en exceso o de déficit que se le asigna a un elemento con respecto a su número atómico, cuando forma parte de un compuesto o está en forma de ión, siguiendo ciertas reglas:
1. Si el número de electrones asignado a un elemento es mayor que su número atómico, se le confiere una carga formal negativa. Por el contrario, si el número de electrones asignado es menor que su número atómico, se le otorga una carga formal positiva.
Basado en el ejemplo anterior:
H+ Z = 1; 1 protón y 0 electrón N° Oxid. = +1
Na+ Z = 11; 11 protones y 10 electrones N° Oxid. = +1
I Z = 53; 53 protones y 54 electrones N° Oxid. = −1
2. En los elementos libres o compuestos formados por un mismo tipo de átomos, el número de oxidación de todos ellos es cero. Por ejemplo: Na, H2, S8, P4. Todos ellos tienen N° de oxidación = 0.
3. En los iones simples (constituidos por un sólo tipo de átomos), el N° de oxidación es igual a la carga del ión. Por ejemplo: Al+++, su N° de oxidación es +3; Fe++, su N° de oxidación es +2; Fe+++, su N° de oxidación es +3.
4. El N° de oxidación del oxígeno es generalmente –2, cuando forma parte de un compuesto; excepto en los siguientes casos:
• Cuando forma parte de compuestos llamados peróxidos, donde hay enlace O-O. En este caso el N° de oxidación asignado para el oxígeno es –1.
• Cuando el oxígeno se combina con flúor (elemento más electronegativo que el oxígeno), el N° de oxidación asignado para el oxígeno es +2.
5. El N° de oxidación asignado para el hidrógeno es +1 en la mayoría de los compuestos. La única excepción es en los hidruros, donde el hidrógeno se une a elementos menos electronegativos que él. Por ejemplo: hidruro de sodio (NaH), en estos casos el N° de oxidación asignado para el hidrógeno es –1.
6. Los N° de oxidación de los diferentes elementos que conforman una molécula deben coincidir con la carga total de esa molécula. Es decir, la suma de los N° de oxidación de los diferentes átomos que la constituye debe ser igual a la carga total de la molécula. De aquí podemos deducir lo siguiente:
• En las moléculas neutras, la suma de los N° de oxidación de los átomos que la forman debe ser igual a cero. Por ejemplo, H2O, el N° de oxidación del H es +1, como hay dos H, contribuye a la molécula con carga +2. El N° de oxidación del O es –2 y la molécula contiene sólo un O; por lo tanto la suma de +2 + (−2) = 0, que corresponde a la carga de una molécula neutra.
• En los iones que están formados por más de un tipo de elemento, la suma de los N° de oxidación de todos los elementos debe ser igual a la carga que posee el ión. Por ejemplo, el ión dicromato, cuya fórmula es Cr 2 O 7−2. Los 7 oxígenos contribuyen con una carga aparente de –14, luego el Cr debe aportar con una carga aparente de +12, como los átomos de Cr son 2, cada uno tendrá un N° de oxidación de +6:
Sea Cr = x
Cr 2 O 7−2: 2142126xxx−=−=+=+ 2
En muchos casos el valor del N° de oxidación corresponde a la valencia de un elemento, pero son conceptos diferentes. Valencia de un elemento es el número de enlaces simples que puede formar un átomo; o bien, el número de átomos de hidrógeno con que puede combinarse; es un número absoluto, no hay un signo asociado a él. En cambio, el número de oxidación representa la carga aparente que tiene un átomo en un compuesto dado y corresponde a un mayor o menor número de electrones asociado a él, según las reglas menciónadas anteriormente. Este número puede ser positivo o negativo, dependiendo de la electronegatividad del átomo en particular. Por ejemplo, H2O, la valencia del oxígeno es 2 y su N° de oxidación es –2; En el óxido de flúor, F2O, la valencia del oxígeno es 2 y su N° de oxidación es +2, porque el flúor es más electronegativo que el oxígeno, entonces se le asigna 1 electrón más a cada flúor con respecto a su N° atómico y el oxígeno queda deficiente de esos 2 electrones. El átomo de sodio (Na, cuyo valor de Z = 11) es neutro y tiene un electrón (1 e-) en su último orbital (estado inicial). Cuando reacciona con agua (H2O) para formar hidróxido de sodio (NaOH) e hidrógeno molecular (H2), pierde este electrón y se transforma en ión sodio (Na+), que corresponde al estado final según la siguiente ecuación: Na(0)+OH 2 Na++OH+H22222
La pérdida de 1 e- se llama oxidación. Una semirreacción de oxidación está siempre acompañada por una disminución en el N° de electrones del elemento que está siendo oxidado. La disminución del N° de electrones asociado con ese átomo, trae como consecuencia un aumento del N° de oxidación (es más positivo).
Los electrones cedidos por los dos átomos de Na se combinan con dos moléculas de H2O para formar una molécula de H2 gas y dos iones OH-. La ganancia de electrones por los hidrógenos del agua se llama reducción. Una semirreacción de reducción está siempre acompañada por un aumento del N° de electrones asociado con el elemento que está siendo reducido. Hay disminución del N° de oxidación.
Los electrones en una reacción de este tipo, son captados por las especies químicas que se reducen a la misma velocidad con que son cedidos por las especies que se oxidan: es decir, cuando ocurre una oxidación, hay siempre una reducción. Estos son sistemas acoplados, en que ambos procesos se realizan simultáneamente.
El compuesto que tiene en sí el elemento que capta los electrones y, por lo tanto, su N° de oxidación disminuye; es decir, se reduce se llama agente oxidante. En este ejemplo es el H2O.
El compuesto que tiene en sí el elemento que cede los electrones; por consiguiente, su N° de oxidación aumenta; es decir se oxida se llama agente reductor. En este ejemplo es Na°.
Agentes Oxidantes: K 2 Cr 2 O 7, K Mn O 4, HNO3, H 2 O 2, O2, Cl2, I2….
Agentes Reductores: H2S, H2, Na°, Mg°, SO2, H 2 SO 3….
Definición
Una reacción de óxido-reducción se caracteriza porque hay una transferencia de electrones, en donde una sustancia gana electrones y otra sustancia pierde electrones:
• la sustancia que gana electrones disminuye su número de oxidación. Este proceso se llama Reducción.
• la sustancia que pierde electrones aumenta su número de oxidación.Este proceso se llama Oxidación.
Por lo tanto, la Reducción es ganancia de electrones y la Oxidación es una pérdida de electrones.
(Ver: PSU: Química; Pregunta 08_2005 (Química2)
Número de oxidación
Corresponde a la carga del elemento químico; es decir, corresponde a un valor arbitrario que se le ha asignado a cada elemento químico, el cual indica la cantidad de electrones que podría ganar, perder o compartir cuando se forma un compuesto.
(Ver: PSU: Química, Pregunta 02_2005)
Para calcular el número de oxidación se deben tener en cuenta las siguientes reglas:
Regla Nº 1: El número de oxidación de cualquier átomo en estado libre o fundamental; es decir, no combinado, es cero.
Ejemplos: Pt , Cu, Au, Fe
Regla Nº 2: El número de oxidación del hidrógeno es +l, excepto en el caso de los hidruros que es –1.
+1: cuando el hidrógeno se combina con un no-metal (ácido).
Ejemplos: HCl; ácido clorhídrico
número de oxidación del hidrógeno: +1
número de oxidación del cloro: –1
HI; ácido yodhídrico
número de oxidación del hidrógeno: +1
número de oxidación del cloro: –1
–1: cuando el hidrógeno se combina con un metal (hidruros)
Ejemplos: NaH; hidruro de sodio
número de oxidación del hidrógeno: -1
número de oxidación del sodio: +1
LiH; hidruro de litio
número de oxidación del hidrógeno: -1
número de oxidación del litio: +1
Regla Nº 3: El número de oxidación del oxígeno es -2, excepto en los peróxido donde es -1.
Ejemplos: CaO; óxido de calcio
número de oxidación del oxígeno: -2
número de oxidación del calcio: +2
H2O2; peróxido de hidrógeno o agua oxigenada
número de oxidación del oxígeno: -1
número de oxidación del hidrógeno: +1
Regla Nº 4: Los metales tienen un número de oxidación + (positivo) e igual a su valencia.
Ejemplos: Ca (calcio): valencia = 2
número de oxidación: +2
Li (litio): valencia = 1
número de oxidación: +1
Regla Nº 5: Los no-metales tienen número de oxidación – (negativo) e igual a su valencia.
Ejemplos: Cl (cloro): valencia = 1
número de oxidación: –1
I (yodo): valencia = 1
número de oxidación: –1
Regla Nº 6: En compuestos, el número de oxidación del Flúor (F) es siempre –1.
Ejemplo. NaF: fluoruro de sodio
número de oxidación del flúor: –1
número de oxidación del sodio: +1
Regla Nº 7: En las moléculas neutras, la suma de los números de oxidación de cada uno de los átomos que la forman es igual a 0.
Ejemplos: Cu2O: óxido cuproso
número de oxidación del cobre: +1; como hay dos átomos de cobre, se multiplica el número de oxidación por el número de átomos de la molécula: 2 • +1= + 2.
número de oxidación del oxígeno: – 2
+ 2 + – 2 = 0
H2SO4: ácido sulfúrico
número de oxidación del hidrógeno: +1; hay 2 átomos = 2 · +1 = +2
número de oxidación del azufre: +6; hay 1 átomo = 1 · +6 = +6
número de oxidación del oxígeno: – 2, hay 4 átomos = 4 · – 2 = – 8
+2 + +6 + – 8 = 0
Regla Nº 8: En un ión la suma de los números de oxidación de sus átomos debe ser igual a la carga del ión.
Ejemplo: PO4–3: fosfato
número de oxidación del fósforo: +5; hay 1 átomo = 1 • +5 = +5
número de oxidación del oxígeno: –2; hay 4 átomos = 4 • – 2 = – 8
La molécula tiene una carga de – 3, por lo tanto, al sumar los números de oxidación del fósforo y del oxígeno, el resultado debe ser igual a – 3.
+5 + – 8 = – 3
– 3 = – 3
Concepto de oxidación- reducción:
Cuando se introduce una lámina de zinc (Zn) en una disolución concentrada de cobre II (Cu; valencia = 2), transcurridos unos segundos, se observa que la lámina se recubre de una capa de cobre metálico.
La ecuación química que representa este proceso es:
Zn + CuSO4 —> Cu + ZnSO4
El sulfato de cobre (II), CuSO4, y el sulfato de zinc, ZnSO4 , son compuestos que, fundidos o disueltos en agua, se disocian en iones, según la siguiente ecuación iónica:
Zn0 + Cu + 2 + SO4 – 2 —> Cu0 + Zn+ 2 + SO 4 – 2
En esta ecuación puede apreciarse que el ión sulfato (SO-2) aparece en ambos lados de la ecuación, por lo tanto, la ecuación puede escribirse de manera más sencilla:
Cu + 2 + Zn0 —> Cu0 + Zn+ 2
La ecuación química nos indica que durante el proceso el átomo de zinc, que era eléctricamente neutro, se ha transformado en el ión Zn+2. Para esto, tuvo que ceder 2 electrones; en cambio, el ión Cu+2 aceptó los 2 electrones del zinc, que lo convirtieron en un átomo de cobre, eléctricamente neutro.
De acuerdo a este hecho experimental, se puede concluir que:
• la sustancia que pierde electrones hace que la otra sustancia gane electrones; es decir, la sustancia que se oxida hace que la otra sustancia se reduzca. Por esto se dice que la sustancia que se oxida es el Agente Reductor, y la sustancia que se reduce es el Agente Oxidante.
• como los electrones son cargas negativas, cuando una sustancia gana electrones; es decir, se reduce, se vuelve más negativa, por lo que disminuye su número de oxidación. Por el contrario, cuando una sustancia pierde electrones, se vuelve más positiva, por lo que aumenta su número de oxidación.
Ejemplo: Zn0 + Cu+2 —> Zn+2 + Cu+0
Esta es una reacción de óxido-reducción porque hay una transferencia de electrones, pues los números de oxidación del Zn y Cu, al comienzo de la reacción, no son los mismos al final de la reacción.
El Zn cambia su número de oxidación de 0 a +2; esto significa un aumento del número de oxidación, por lo tanto, hay una pérdida de electrones (2 electrones); el Fe es agente reductor.
El Cu cambia su número de oxidación de +2 a 0; esto significa una disminución del número de oxidación, por lo tanto, hay una ganancia de electrones (2 electrones); el Cu es agente oxidante.
Esquema de una pila alcalina. |
Esta reacción química entre el zinc y el sulfato de cobre se utiliza para obtener corriente eléctrica. Para ello es necesario diseñar un dispositivo que permita que la reacción se desarrolle en dos partes físicamente separadas: una parte donde se generan los electrones (por la oxidación del Zn), y otra, en la que se reciben (por la reducción del Cu+2). Si conectamos ambas partes con un alambre, el movimiento de los electrones a través de él generará una corriente eléctrica.
Semi-reacciones de óxido-reducción:
De acuerdo a lo anterior, puede decirse que la reacción química descrita anteriormente involucra dos procesos, los cuales pueden representarse mediante semi-reacciones, una semi-reacción de oxidación y una semi-reacción de reducción. Como estos dos procesos ocurren simultáneamente, la suma de ambas semi-reacciones, da la reacción total.
Las ecuaciones que describen estos procesos son:
Semi-reacción de oxidación:
Zn —> Zn +2 + 2e–
Semi-reacción de reducción:
Cu+2 + 2e– —> Cu
Por lo tanto, en el proceso de oxidación un átomo o ión cede uno o más electrones; mientras que en el de reducción, el átomo o ión capta uno o más electrones. Ambos procesos son complementarios y ocurren simultáneamente. De ahí el nombre de reacciones redox. En los procesos de óxido-reducción, la transferencia de electrones siempre ocurre desde un agente reductor a un agente oxidante. |
Átomo o ión que se: | |
Oxida | Reduce |
Cede electrones Aumenta su número de oxidación Es un agente reductor | Acepta electrones Disminuye su número de oxidación Es un agente oxidante |
Para escribir las semi-reacciones siempre se debe considerar lo siguiente:
1. se debe igualar cada semi-reacción en cuanto a átomos (balance de masa) y en cuanto a carga (balance de cargas)
2. al escribir las semi-reacciones y equilibrar las cargas, se deben agregar electrones a la derecha en la oxidación (hay pérdida de electrones) y a la izquierda en la reducción (hay ganancia de electrones).
3. como en la ecuación total no aparecen electrones, se debe multiplicar cada semi-reacción, si fuese necesario, por un número que permita igualar los electrones de la derecha con los electrones de la izquierda, a fin de que se simplifiquen.
4. Sumar las semi-reacciones y comprobar que los átomos y las cargas estén equilibradas a ambos lados de la ecuación.
Volviendo al ejemplo anterior:
Zn0 + Cu +2 + SO4 -2 —> Cu0 + Zn+2 + SO 4 –2
Como los átomos que participan en la reacción son sólo el Zn y el Cu, se anota la ecuación química en forma más simple:
Zn0 + Cu+2 —> Zn+2 + Cu+0
Se plantean las semi-reacciones:
Semi-reacción de oxidación:
Zn —> Zn +2 + 2e–
Semi-reacción de reducción:
Cu+2 + 2e– —> Cu
Sumando ambas semi-reacciones se tiene:
Zn —> Zn +2 + 2e–
+ Cu+2 + 2e– —> Cu
--------------------------------------------------------------------------
Zn0 + Cu+2 —> Zn+2 + Cu+0
(Ver: PSU: Química, Pregunta 10_2005)
Aplicaciones de la oxidación-reducción
Las reacciones de oxidación-reducción son muy frecuentes en la industria ya que constituyen el principio de funcionamiento de las pilas eléctricas, tales como las pilas alcalinas y se emplean para refinar electroquímicamente determinados metales, tales como el cobre en nuestro país. También se utilizan para la protección de los metales contra la corrosión. En la naturaleza, intervienen en la respiración celular y en la fotosíntesis.
Fuentes:
Ciencias Químicas II y IV. Educación Media. Santillana
Enciclopedia Encarta
Curso Universitario de Química. BruceMahan
II Curso de Química General. Francisco Santamaría
Es propiedad: www.profesorenlinea.cl. Registro Nº 188.540
No hay comentarios:
Publicar un comentario